

Submersible Ejector BER

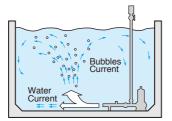
BER/TOS-BER SUBMERSIBLE EJECTOR

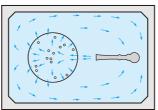
FEATURES

The powerful single direction jet current is unrivaled in vertical stirring convection. And its required shaft power is not so much changed when the depth changes.

APPLICATIONS

- Pre-aeration and mixing at wastewater treatment plant
- Supplying oxygen to water in aquafarm


■ MAJOR COMPONENTS & SPECIFICATIONS


Air-inlet Bore mm			25	32	50			
Treating Type of Fluid Fluid Temperatu		luid	Wastewater and Sewage					
		nperature	0 to 40°C					
		Impeller	Channel					
	Structure	Shaft Seal	Double Mechanical Seal (with Oil Lifter)					
		Bearing	Double-shielded Ball Bearing					
Pump		Diffuser *	Structure Steel + Nylon Coated					
rullip		Impeller	Gray Cast Iron					
	Materials	Suction Cover	Gray Cast Iron					
		Casing	Gray Cast Iron					
		Shaft Seal	Silicon Carbide					
	Type, Pole	2	Dry Type Submersible Induction Motor					
	Type, Tole		2, 4-pole					
	Insulation		Class E, F (1.5kW and 5.5kW only)					
	Phase		Three-phase					
Motor	Protection I	Device (built-in)	Circle Thermal Protector					
IVIOLOI	Lubricant		Turbine Oil (ISO VG32)					
		Frame	Gray Cast Iron					
	Materials	Shaft	Stainless Steel 403, 420 (1.5kW and about					
	Waterials	Cable	PVC Chloroprene Rubber (5.5kW only)					
Air-inlet Connection			Screwed Flange					

^{*}Available in stainless steel 304 upon request

CONVECTION PATTERN

CABTYRE CABLES

	VOC	380-60	200-240V		Motor	
Material	Dia. mm	Cores× mm²	Dia. mm	Cores _× mm ²	Output kW	
	11.1	4×1.25	11.1	4×1.25	0.75	
D.V.O	11.1	4×1.25	11.1	4×1.25	1.5	
PVC	11.1	4×1.25	11.8	4×2	2.2	
	11.8	4×2	13.9	4×3.5	3.7	
Chloroprene Rubber	1/11	43.5	14 1	4.35	5.5	

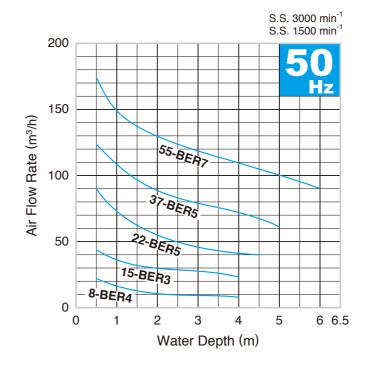
MODEL SELECTION

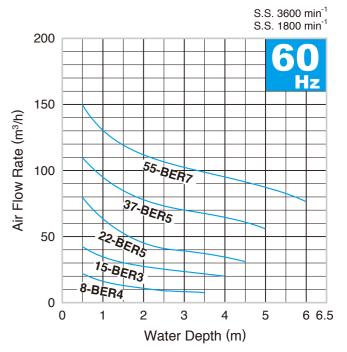
Air-inlet		Model	Motor	r Speed	Starting	Air Flow Rate	Mixing	Max. Tank Dimension			Dry Weight*2kg				
Bore mm	Frequency Hz	Free Standing	Guide Rail Fitting	Output	Output (s.s.)	Output (s.s.) Method	Method	-Water Depth m³/h-m	later Depth Capacity	Length m	Width m	Depth m	Water Depth m	Free Standing	Guide Rail Fitting
0.5	50	8-BER4	TOS- 8BER4	0.75	3000	D.O.L.	11-3	22	3	2	4	4	28	23	
25	60	8-BER4	TOS- 8BER4	0.75	3600	D.O.L.	9-3	21	3	2	3.5	3.5	28	23	
32	50	15-BER3	TOS-15BER3	1.5	3000	D.O.L.	28-3	41	4	3.5	4	4	43	34	
32	60	15-BER3	TOS-15BER3	1.5	3600	D.O.L.	24-3	40	4	3.5	4	4	43	34	
	50	22-BER5	TOS-22BER5	2.2	1500	D.O.L.	45-3	63	5	5	4.5	4.5	75	61	
		37-BER5	TOS-37BER5	3.7	1500	D.O.L.	80-3	94	6	6	5	5	91	77	
50		55-BER7	TOS-55BER7	5.5	1500	D.O.L.	120-3	126	7	7	6	6	149	132	
30	60	22-BER5	TOS-22BER5	2.2	1800	D.O.L.	38-3	60	5	5	4.5	4.5	75	61	
		37-BER5	TOS-37BER5	3.7	1800	D.O.L.	70-3	90	6	6	5	5	91	77	
		55-BER7	TOS-55BER7	5.5	1800	D.O.L.	105-3	120	7	7	6	6	149	132	

 ^{*1} The air flow rates are expressed at the standard condition. : Temperature 20°C, 1 atm
 *2 All weights excluding cable
 Weights of guide rail fitting model excluding duckfoot bend

STANDARD ACCESSORIES

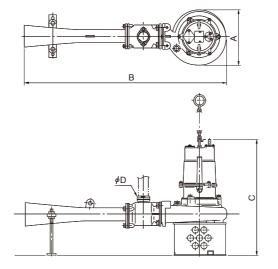
Free Standing —
Silencer & Valve Set1 set
Lifting Chain (5m / with Shackles)1 set
Suction Casing (with Nozzle Ring, Packing & Bolts) 1 set
Screwed Flange (with Packing & Bolts)1 set
Diffuser (with Packing & Bolts)1 set
Diffuser Base (with Nuts)1 set

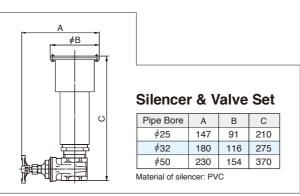

zui	ae	Rai	1 5	ш	ng	ŀ
ilon	car 8	. Valve	9	ıt		

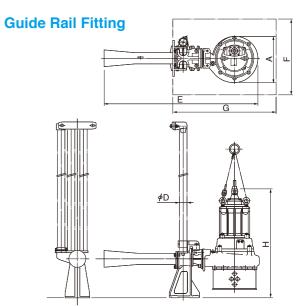

Silericer & valve SetI Set
Lifting Chain (5m / with Shackles) 1 set
Guide Support (with Bolts & Nuts) 1 set
Air-inlet Pipe Support (with U-bolt & Nuts) 1 set
Guide Hook (with Bolts)1 set
Nozzle (with Nozzle Ring, Packing & Bolts) 1 set

Suction Casing1 s	se
Guide Connector (with Bolts) 1 s	se
Screwed Flange (with Packing & Bolts) 1 s	se
Diffuser (with Packing & Bolts) 1 s	se

■ AIR FLOW RATE - WATER DEPTH CURVES


(The air flow rates are expressed at the standard condition, i.e. temperature of 20°C, 1 atm and may vary by up to approximately 5%.)





DIMENSIONS

Free Standing

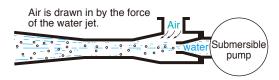
(Unit: mm)

Free Standing	8-BER4	15-BER3	22-BER5	37-BER5	55-BER7
Guide Rail Fitting	TOS-8BER4	TOS-15BER3	TOS-22BER5	TOS-37BER5	TOS-55BER7
Α	194	222	316	325	391
В	674	895	1158	1163	1415
С	464	562	679	753	942
D*	25	32	50	50	50
E	674	910	1162	1167	1422
F	350	450	450	450	500
G	550	650	700	700	750
Н	514	603	767	836	1006

*Nominal size

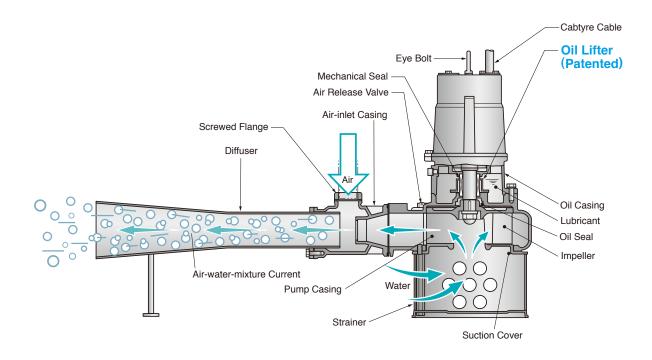
BER/TOS-BER SUBMERSIBLE EJECTOR

The Tsurumi Submersible Ejector, as shown in the figure, draws air in from the vicinity of jet nozzle by means of the water power discharged from the submersible pump. A mixture of air and water is then produced inside the diffuser. This mixture is pressurized just to the point where the pressure exceeds the water pressure around the ejection outlet, and then it forcibly jets into the surrounding water.


As a result, the ejected current is jetted in a single direction for a comparatively long range, enabling the generation of an extremely large churning effect.

Furthermore, even if the water depth fluctuates, the required shaft power hardly changes. The air quantity is freely adjusted as well. Because of this, the submersible ejector is also ideal as a aerator in equalizing tanks where the fluctuation in the water level is comparatively great.

A particularly large sales point is the fact that due to the air/water collision that occurs while the suction-inducted air is in a minutely particulated, pressurized state, the oxygen dissolution efficiency is remarkably high.


The principle of the ejector system

This system is a combination of a submersible pump and a jet pump. By the action of the ejection current of the submersible pump, a self-feeding force is generated, which draws air from the surface of the water through an air-inlet pipe. This air is mixed with the water and the mixture is ejected. The churning force caused by this ejection current is remarkably strong, with the result that exceptionally efficient oxygen dissolution is produced.

The mixture is pressurized to the point (exceeding the water pressure), where it can be ejected.

As a result, minute air bubbles and water are ejected in a pressurized state, enabling a large amount of oxygen to be dissolved in the water.

We reserve the right to change the specifications and designs for improvement without prior notice.

TSURUMI MANUFACTURING CO., LTD.

Your Dealer

Chainaris Phuket Engineering Co., Ltd. 63/13 Moo.2, T.Vichit, A.Muang Phuket 83000 Tel. 076-513100-3 Fax. 076-513105

www.chainaris.co.th